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Abstract
We represent quantum phase observables as phase shift covariant normalized
positive operator measures. The phase operators are the first moment operators
of the phase observables. A phase operator determines the associated phase
observable uniquely. We show that the Cahill–Glaubers-ordered phase
operators are determined by phase shift covariant generalized operator
measures, which are ordinary operator measures whenever Res < 0 and phase
observables whens � −1. The Wigner–Weyl quantized phase operator is
not determined by any phase observable. We investigate the classical limit of
covariant (generalized) operator measures in coherent states.

PACS numbers: 03.65.−w, 02.03.−f, 05.70.Fh, 42.50.Dv

1. Introduction

In the textbook presentation of quantum mechanics, a physical quantity, an observable, is
described by a self-adjoint operator or, equivalently, by a spectral measure on a Hilbert space.
It is well known that this description is too narrow and that its natural extension is given
by the concept of a positive operator measure. In this wider interpretation, quantum phase
observables are represented as phase shift covariant normalized positive operator measures
[1–3].

The traditional quantization rules associate self-adjoint operators to classical dynamical
variables. In the case of phase, the natural dynamical variable to be quantized is the angle
variable of the two dimensional phase space (for an overview, see e.g. [4] or [5]). In this paper,
we investigate the possibility to represent some of such quantized phase angles as the first
moment operators of phase observables.

The first moment operator defines the related phase observable uniquely. Thus, it is
natural to consider it as a phase operator. Conversely, to call a bounded self-adjoint operator
a phase operator, it should be the first moment operator of a phase observable, since the

0305-4470/01/387901+16$30.00 © 2001 IOP Publishing Ltd Printed in the UK 7901

http://stacks.iop.org/ja/34/7901


7902 J-P Pellonp̈aä

spectral measure of such an operator is never phase shift covariant and therefore cannot be
considered as a phase observable. For example, the Wigner–Weyl quantized phase angle has
been suggested to be a phase operator [6–9] but, as we will see, it is not determined by any
phase observable.

Cahill and Glauber [10] defined thes-ordering rule which can be used to quantize the
phase angle and to get the so-calleds-ordered phase operators. We will show that this
quantization leads to phase operators only for some values of the parameters. Still, the
non-positive covariant normalized generalized operator measures determined by thes-ordered
phase operators behave well in the classical limit of coherent states.

2. Phase observables

2.1. The basic theorem

Let H denote a complex separable Hilbert space with a fixed basis{|n〉 ∈ H|n ∈ NN} and
letL(H) denote the set of bounded operators onH. For anyA ∈ L(H) we writeAn,m instead
of 〈n|A|m〉 to shorten the notations. Define the lowering and the number operators asa :=∑∞
n=0

√
n + 1|n〉〈n+1| andN := a∗a = ∑∞

n=0 n|n〉〈n|, respectively, with their usual domains
D(a) := {φ ∈ H | ∑∞

n=0 n|〈n|φ〉|2 < ∞} andD(N) := {φ ∈ H | ∑∞
n=0 n

2|〈n|φ〉|2 < ∞},
and letR(θ) := eiθN, θ ∈ RR, be a phase shifter.

Let � be a Borel subset of the complex planeCC and letB(�) denote theσ -algebra of
the Borel subsets of�. We say that a mappingE: B(�) → L(H) is anoperator measure
if it is σ -additive (in the weak operator topology) and thatE is normalized if E(�) = I .
If E(X)=E(X)∗ or E(X)�O for all X ∈B(�) we say thatE is self-adjoint or positive,
respectively. The fact that an operator measureE: B(�) → L(H) is normalized and positive
equals the fact that for any unit vectorψ the mappingX → 〈ψ|E(X)ψ〉 is a probability
measure. A positive normalized operator measure (POM)E: B(�) → L(H) is a spectral
measure if E(X)2 = E(X) for all X ∈ B(�).

An operator measureEα : B([α − π, α + π)) → L(H), whereα ∈ RR, is covariant under
the phase shifts generated by the number operatorN if

R(θ)Eα(X)R(θ)∗ = Eα(X ⊕ θ) (1)

for all X ∈ B([α − π, α + π)) and for allθ ∈ [0,2π), whereX ⊕ θ := {x ∈ [α − π, α + π)
| (x − θ)(mod 2π) ∈ X}. A phase observable is a covariant POME: B([0,2π)) → L(H).
An important example of phase observables is thecanonical phase observable [1, 2, 11]. It
can be defined by using the London phase states

|θ) := 1√
2π

∞∑
n=0

einθ |n〉

as

Ecan(X) :=
∫
X

|θ)(θ | dθ =
∞∑

n,m=0

1

2π

∫
X

ei(n−m)θ dθ |n〉〈m| X ∈ B([0,2π)). (2)

Next we generalize the definition of a phase observable.
We note that any phase interval [α−π, α+π),α ∈ RR, is an equally good set of measurement

outcomes of a phase observable as [0,2π) since we only change the parametrization of the
unit circle. However, as we will see in section 3, the first moment operators of different
covariant POMs based on intervals [α − π, α + π) and [β − π, β + π), α �= β, differ. Thus,
for all α ∈ RR we define anα-shifted phase observable Eα as a covariant POM based on the
α-shifted interval [α − π, α + π).
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Following the proof of phase theorem 2.2 of [3] one gets the structure theorem of covariant
normalized (not necessarily positive) operator measures:

Theorem 2.1. Fix α ∈ RR and let Eα: B([α − π, α + π))→ L(H) be a covariant normalized
operator measure. For any X ∈ B([α − π, α + π)),

Eα(X) =
∞∑

n,m=0

cn,m
1

2π

∫
X

ei(n−m)θ dθ |n〉〈m| (3)

where the series converge in the weak operator topology (and the summation order is
irrelevant), and where cn,m ∈ CC and cn,n = 1 for all n,m ∈ NN. If Eα is self-adjoint then
c̄n,m = cm,n.

We say that the matrix(cn,m)n,m∈N of theorem 2.1 is thestructure matrix of Eα . If Eα

is anα-shifted phase observable we say that(cn,m)n,m∈N is the phase matrix of Eα . For
anyα-shifted phase observableEα the phase matrix(cn,m) is positive semidefinite, that is,
all the principal minors of(cn,m) are non-negative (see [11]). In particular, this implies that
|cn,m| � 1 for all n,m ∈ NN. Conversely, if(cn,m) is a positive semidefinite complex matrix
with the diagonal elements equal to one then the map

Eα: B([α − π, α + π))→ L(H)

X → Eα(X) :=
∞∑

n,m=0

cn,m
1

2π

∫
X

ei(n−m)θ dθ |n〉〈m|

defines anα-shifted phase observable for allα ∈ RR (see phase theorem 2.2 of [3]). This shows
that there is a bijective mapping from the set of positive semidefinite complex matrices(cn,m)

with the diagonal elements equal to one to the set of the classes{Eα | α ∈ RR} of α-shifted
phase observables where anyEα in the same class have the same phase matrix. In the rest of
this paper we indentify theα-shifted phase observables which have the same phase matrix and
briefly call theα-shifted phase observables as phase observables. We also drop out the index
α from the symbolEα.

2.2. Generalized operator measures

One may ask if the converse statement of theorem 2.1 is true. We study this question next.
Let (cn,m)n,m∈N be an infinite-dimensional complex matrix and suppose thatcn,n ≡ 1.

LetM := lin{|n〉 | n ∈ NN} and define the following function for allϕ,ψ ∈ M:

RR � θ → Cϕ,ψ (θ) :=
∞∑

n,m=0

cn,mei(n−m)θ 〈ϕ|n〉〈m|ψ〉 ∈ CC.

For a fixedα ∈ RR, define

Eϕ,ψ([α − π, α + π)) := 1

2π

∫ α+π

α−π
Cϕ,ψ (θ) dθ = 〈ϕ|ψ〉.

Then(ϕ,ψ) → Eϕ,ψ ([α− π, α +π)) is a bounded sesquilinear form onM which is a dense
linear subspace ofH. Hence it has a unique bounded extension toHwhich is(ϕ,ψ) → 〈ϕ|ψ〉.
Thus, we can formally writeE([α − π, α + π)) = I .

Consider the following sesquilinear form defined for all (Borel) subsetsXof [α−π, α+π):

M × M � (ϕ,ψ) → Eϕ,ψ(X) := 1

2π

∫
X

Cϕ,ψ (θ) dθ ∈ CC.
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The form (ϕ,ψ) → Eϕ,ψ(X) need not be bounded, so that it does not necessarily
define a bounded operator onH. Also it is possible that there are someϕ,ψ ∈ H\M
for which the mappingθ → ∑∞

n,m=0 cn,mei(n−m)θ 〈ϕ|n〉〈m|ψ〉 cannot be defined for dθ -
almost all θ ∈ RR, and if it is defined for someϕ′, ψ ′ ∈ H\M, the functionθ →∑∞
n,m=0 cn,mei(n−m)θ 〈ϕ′|n〉〈m|ψ ′〉 need not be integrable over [α − π, α + π). To conclude,

the formal notations

E(X) =
∞∑

n,m=0

cn,m
1

2π

∫
X

ei(n−m)θ dθ |n〉〈m| (4)

E([α − π, α + π)) = I (5)

must be understood as the sesquilinear forms defined on the largest possible domainD ⊆ H
where for allϕ,ψ ∈ D,∑∞

n,m=0 cn,mei(n−m)θ 〈ϕ|n〉〈m|ψ〉 is defined for dθ -almost allθ ∈ RR

and(2π)−1
∫ 2π

0

∑∞
n,m=0 cn,mei(n−m)θ 〈ϕ|n〉〈m|ψ〉 dθ = 〈ϕ|ψ〉. Note that alwaysM ⊆ D and

D is a dense linear subspace ofH.
Let H1 := {ϕ ∈ H | ∑∞

n=0 |〈n|ϕ〉| < ∞} and suppose that|cn,m| � b < ∞ for all
n,m ∈ NN. Then

∣∣∑∞
n,m=0 cn,mei(n−m)θ 〈ϕ|n〉〈m|ψ〉∣∣ � b

∑∞
n=0 |〈n|ϕ〉| ∑∞

m=0 |〈m|ψ〉| for all
ϕ,ψ ∈ H1 and θ ∈ RR, so that, in this case,H1 ⊆ D. Next we define the concept of a
generalized operator measure.

Let K be a linear subspace ofH, and letSL(K,K; CC) be the set of sesquilinear forms
fromK × K to CC.

Definition 2.1. We say that a mapping G: B(�) → SL(K,K; CC) is a generalized operator
measure if for all ϕ, ψ ∈ K the mapping

B(�) � X → [G(X)](ϕ,ψ) ∈ CC

is a complex measure. If K is dense and [G(�)](ϕ,ψ) = 〈ϕ|ψ〉 for all ϕ, ψ ∈ K we
say that G is normalized and denote G(�) = I . If [G(X)](ϕ,ψ) = [G(X)](ψ, ϕ), or
[G(X)](ψ,ψ) � 0, for all X ∈ B(�) and for all ϕ, ψ ∈ K we say that G is symmetric, or
positive, respectively.

If for a normalized generalized operator measure (GOM)

Gα: B([π − α, π + α)) → SL(K,K; CC),

α ∈ RR, the conditions R(θ)K = K and

[Gα(X)](R(θ)∗ϕ,R(θ)∗ψ) = [Gα(X ⊕ θ)](ϕ,ψ)
hold for all θ ∈ [0,2π),X ∈ B([π − α, π + α)) and ϕ, ψ ∈ K, then Gα is (phase shift)
covariant.

Following the proof of phase theorem 2.2 of [3] it is easy to show that if|n〉, |m〉 ∈ K then
[Gα(X)](|n〉, |m〉) = dn,m(2π)−1

∫
X

ei(n−m)θ dθ for all X wheredn,m ∈ CC. If |n〉, |m〉 ∈ K
for all n, m ∈ NN we say that(dn,m)n,m∈N is thestructure matrix of a covariant GOMGα. Note
thatdn,n = 1 if |n〉 ∈ K.

SinceR(θ)D = D it follows thatE defined in (4) is a covariant GOM and(cn,m) is its
structure matrix. IfE is symmetric or, equivalently,cn,m = cm,n for all n,m ∈ NN, we say that
E is aquasi phase observable. The name quasi phase observable comes from the observation
that for any quasi phase observableE and for a unit vectorψ ∈ D the mappingX → Eψ,ψ(X)

is a quasi probability measure, that is, a normalized real measure. An example of a quasi
probability measure is the polar coordinate margin measure of the Wigner function of a state
(when it exists). Indeed, as will be shown in section 5.2, this measure is related to a certain
quasi phase observable.
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Finally, if E is positive then the matrix(cn,m) is positive semidefinite. Hence, 0�
Eϕ,ϕ(X) � Eϕ,ϕ([α − π, α + π)) = ‖ϕ‖2 and(ϕ,ψ) → Eϕ,ψ (X) is bounded onM. In this
case,D = H and the sesquilinear formE(X) can be regarded as a bounded operator with the
unique matrix elementsE|n〉,|m〉(X) = cn,m(2π)−1

∫
X ei(n−m)θ dθ , n,m ∈ NN. The mapping

E: B([α−π, α +π)) → L(H) isσ -additive (see the proof of phase theorem 2.2 of [3]). Thus,
equation (4) defines an (α-shifted) phase observableX → E(X).

3. Phase operators

For anyα ∈ RR letE: B([α − π, α + π)) → L(H) be a covariant normalized (not necessarily
positive) operator measure, and letEψ,ϕ denote the complex measureX → Eψ,ϕ(X) :=
〈ψ|E(X)ϕ〉. Thefirst moment operator of E is defined as

〈ψ| ϕ〉 :=
∫ α+π

α−π
θ dEψ,ϕ(θ) ψ, ϕ ∈ H.

The operator is bounded, and ifE is self-adjoint then is self-adjoint. From theorem 2.1
one gets

 = αI +
∞∑

n�=m=0

cn,m
i

m− nei(n−m)(α−π)|n〉〈m| (6)

which implies that

cn,m =  n,mi(n−m)ei(n−m)(π−α) n �= m. (7)

LetA be a boundedoperator for whichAn,n = α for all n ∈ NN and for someα ∈ RR. Define
an,n := 1 andan,m := An,mi(n − m)ei(n−m)(π−α) for all n �= m. If the matrix(an,m)n,m∈N

is positive semidefinite thenX → ∑∞
n,m=0 an,m(2π)

−1
∫
X

ei(n−m)θ dθ |n〉〈m| is an (α-shifted)
phase observable whose first moment operator isA. This shows that already the first moment
operator of a phase observableE determinesE uniquely. Hence, ifE is a phase observable
we say that is thephase operator associated with the phase observableE.

Remark 3.1. Let (cn,m)n,m∈N be an infinite-dimensional complex matrix withcn,n ≡ 1 and
fix α ∈ RR. For allX ∈ B([α − π, α + π)) let E(X) be the sesquilinear form defined on
D (see equation (4)). Integrating the identity function with respect to the complex measure
X → Eϕ,ψ (X), ϕ,ψ ∈ M, yields the following sesquilinear form,the first moment form:

(ϕ,ψ) →  ϕ,ψ :=
∫ α+π

α−π
θ dEϕ,ψ(θ) =

∞∑
n,m=0

cn,m
1

2π

∫ α+π

α−π
θei(n−m)θ dθ〈ϕ|n〉〈m|ψ〉.

If it is bounded then(ϕ,ψ) →  ϕ,ψ defines the bounded operator

 := αI +
∞∑

n�=m=0

cn,m
i

m− nei(n−m)(α−π)|n〉〈m| (8)

and we say that is thefirst moment operator of the covariant GOME. If cn,m = cm,n, n,m ∈
NN, then is self-adjoint. Note that any bounded operatorA,An,n ≡ α, is the first moment
operator of a unique covariant GOM based on [α−π, α+π)which has the matrix(an,m)n,m∈N,
an,n ≡ 1, an,m ≡ An,mi(n−m)ei(n−m)(π−α), as its structure matrix.

Remark 3.2. Let E be a covariant GOM based on [α − π, α + π) and(cn,m) be its structure
matrix. Letϕ,ψ ∈ M. It is easy to see that

 Nϕ,ψ − ϕ,Nψ = i[ 〈ϕ|ψ〉 − Cϕ,ψ (α − π)]. (9)
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Since for allϕ,ψ ∈ M∫ α+π

α−π
2πδ2π(θ − α + π) dEϕ,ψ(θ) = Cϕ,ψ (α − π)

whereδ2π(θ) is a 2π-periodic Dirac delta distribution, the expression (9) corresponds to the
classical Poisson bracket

{H,φ}PB = 1 − 2πδ2π(θ − α + π) (10)

whereH is the classical oscillator energy andφ ∈ [α − π, α + π) is a single-valued classical
phase (see section II of [4]).

Remark 3.3. The phase operator of a phase observableE based on [α − π, α + π) is
self-adjoint and bounded with

(α − π)I �  � (α + π)I.

Let F be the unique spectral measure of . Since no phase observable is projection valued it
follows thatE �= F .

The conventional interpretation of quantum mechanics identifies self-adjoint operators
and observables. One might thus consider the spectral measureF of as a phase observable.
However, there are several reasons whyF cannot describe a quantum phase observable:

(1) F does not obey the phase shift covariance condition which is essential for the
interpretation of phase measurement statistics. Although the first moment operators
of E andF coincide,

∫
θ dE(θ) = ∫

θ dF(θ), the other moments are not the same. For
example,

∫
θ2 dE(θ) is strictly greater than(

∫
θ dE(θ))2 = ∫

θ2 dF(θ) (see e.g. [12,
appendix, section 3]). This means, in particular, that the moments of a phase probability
measureX → tr(E(X)T ) related to a measurement of the phase observableE in a state
T (which is a positive trace-one operator) are not the moments of the probability measure
X → tr(F (X)T ).

(2) The support ofE is always the interval [α−π, α+π ] whereas in many cases the spectrum
of (or the support ofF) is a proper subset of [α−π, α +π ]. For example, in the case of
the trivial phase observableEtriv(X) := (2π)−1

∫
X dθ I ,X ∈ B([0,2π)), the probability

measureX → tr(T Etriv(X)) in a stateT is uniformly distributed on [0,2π) and, thus,
describes a trivial phase measurement where one cannot get any information, for example,
from the phase of a large amplitude coherent state. The support of the spectral measure
Ftriv of the phase operator triv = πI is the one-point set{π}, so that it is hard to consider
Ftriv as a phase observable.

(3) Using the fact that|cn,m| � 1, n, m ∈ NN, for the phase matrix elements ofE, one easily
calculates that

〈n| 2|n〉 − (〈n| |n〉)2 =
∞∑
m=0
m �=n

|cn,m|2
(n−m)2 <

π2

3

which shows thatF is never random in number states. On the other hand,E always gives
the random phase distribution in number states.

Finally, note that there are realistic measurement schemes constructed for the measurements
of different phase observables. In particular, this applies to all the so-called phase space phase
observablesE|n〉, n ∈ NN [13]. ActuallyE|0〉 (or the angle margin of the HusimiQ-function)
has already been measured in some states using a double homodyne detection.
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Example 3.1. Consider the first moment operator of the canonical phaseEcan(or the Garrison–
Wong–Galindo operator [14–16])

 can = πI +
∞∑

n�=m=0

i

m− n |n〉〈m|. (11)

Its spectral measureFcanas well asEcanhas the support [0,2π ], and they both behave well in
the classical limit of coherent states [11, 14, 17]. However, onlyEcan is covariant, and thus,
describes a true phase observable.

Remark 3.4. LetA be a bounded self-adjoint operator withAn,n ≡ α andE be its (unique)
quasi phase observable based on [α − π, α + π). Let F be a spectral measure ofA. The
situation differs from the case of a phase operator sinceE may not be positive. Hence, the
quasi probability measureX → Eψ,ψ(X), ψ ∈ D, ‖ψ‖ = 1, may get negative values and,
thus, it cannot be considered as a probability measure. Still the measureX → Fψ,ψ (X) is a
probability measure.

As we shall see in section 5.2 the symmetrically ordered phase operator (the Wigner–Weyl
quantized phase angle) is determined by a quasi phase observable which is not a POM. Its
spectral measure has been suggested as a phase observable (although it is not covariant), since
its support seems to be the whole interval [0,2π ] and it behaves well in the classical limit of
coherent states [6–9]. The spectral measure of the symmetrically ordered phase operator does
not give a random phase distribution in number states [6, p. 458].

4. Covariant angle margins of the phase space operator measures

Let D(z) : = eza
∗−z̄a, z ∈ CC, be a unitary shift operator andν: B(CC) → [0,∞] be the

two-dimensional Lebesgue measure. For any trace class operator( ∈ L(H)
1

π

∫
C

D(z)(D(z)∗ dν(z) = tr(()I (12)

holds (see e.g. [18]). If tr(() = 1 then one can define the following normalized operator
measure:

B(CC) � Z → A((Z) := 1

π

∫
Z

D(z)(D(z)∗ dν(z) ∈ L(H) (13)

with the associated operator density

CC � z → D(z)(D(z)∗ ∈ L(H). (14)

We say thatA( is anoperator ordering measure or a phase space operator measure and(
is thegenerator of A(. If ( = T is a state thenAT is positive, and it is called aphase space
observable.

Writing CC � z = |z|ei argz ≡ reiθ , (r, θ) ∈ [0,∞) × [0,2π), we may define the polar
coordinate angle margin measure ofA(:

B([0,2π)) � X → E((X) := A(([0,∞)×X) ∈ L(H). (15)

If E( is covariant (under phase shifts) thenA( is so-calledcovariant operator ordering
measure [4]. If the angle marginET of a phase space observableAT is covariant we say that
ET is aphase space phase observable. Theorem 4.1 of [3] states that for any stateT the angle
marginET of a phase space observableAT is a phase observable if and only ifT is of the form

T =
∞∑
k=0

λk |k〉〈k|
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whereλk � 0, k ∈ NN and
∑∞
k=0 λk = 1. Especially, whenT = |k〉〈k|, k ∈ NN, we write

AT ≡ A|k〉 andET ≡ E|k〉. Using theorem 2.1 and the proof of theorem 4.1 of [3] one can
prove the following generalization:

Theorem 4.1. Let ( be a trace-one operator. Then the angle margin E( of a phase space
operator measure A( is covariant if and only if the generator( of A( is of the form

( =
∞∑
k=0

λk |k〉〈k|

where λk ∈ CC, k ∈ NN,
∑∞
k=0 |λk | <∞ and

∑∞
k=0 λk = 1.

In the context of theorem 4.1 one may write

A( =
∞∑
k=0

λkA
|k〉 (16)

E( =
∞∑
k=0

λkE
|k〉 (17)

c(n,m =
∞∑
k=0

λkc
|k〉
n,m n,m ∈ NN (18)

(with the convergence in the weak operator topology) where(c
|k〉
n,m) is the structure matrix of

E|k〉. From [3] one gets for alln,m, k ∈ NN that

c|k〉n,m = (−1)max{0,k−n}+max{0,k−m}
√
(min{n, k})!(min{m, k})!
(max{n, k})!(max{m, k})!

×
∫ ∞

0
e−xx(|k−n|+|k−m|)/2L|k−n|

min{n,k}(x)L
|k−m|
min{m,k}(x) dx (19)

whereLαl is the associated Laguerre polynomial.

5. Cahill–Glauber s-ordered phase operators

Let λ ∈ CC, r ∈ [0,∞), θ ∈ [0,2π) andn,m, k ∈ NN. One can show (see e.g. [10]) that when
λ �= 0

∞∑
k=0

λkD(r)n,kD(r)m,k =
√
(min{n,m})!
(max{n,m})! (1 − λ)|n−m|λmin{n,m}

×e(λ−1)r2
r |n−m|L|n−m|

min{n,m}((2 − λ− λ−1)r2)

and∫ 2π

0

1

2π

∫ ∞

0
(1 − λ)

∞∑
k=0

λkD(reiθ )n,kD(reiθ )∗k,m dr2 dθ

=
{
δn,m(1 − λ)λn ∫ ∞

0 e(λ−1)r2
L0
n((2 − λ− λ−1)r2) dr2 whenλ �= 0

δn,m
1
n!

∫ ∞
0 e−r2

r2n dr2 whenλ = 0

= δn,m if and only if Reλ < 1.
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Suppose that Reλ < 1 and letDλ consists of those vectorsϕ,ψ for which the sequence

p →
p∑
k=0

λk〈ϕ|D(z)|k〉〈k|D(z)∗|ψ〉

converges forν-almost allz ∈ CC and

1

π

∫
C

(1 − λ)
∞∑
k=0

λk〈ϕ|D(z)|k〉〈k|D(z)∗|ψ〉 dν(z) = 〈ϕ|ψ〉.

NowM ⊆ Dλ andDλ is dense linear subspace ofH. Also the coherent states|z〉 := D(z)|0〉,
z ∈ CC, are elements ofDλ. Thus, one can define for all (Borel) subsetsZ of CC a sesquilinear
form onDλ as

(ϕ,ψ) → Ã
λ
ϕ,ψ(Z) := 1

π

∫
Z

(1 − λ)
∞∑
k=0

λk〈ϕ|D(z)|k〉〈k|D(z)∗|ψ〉 dν(z).

Since(ϕ,ψ) → Ã
λ
ϕ,ψ(CC) = 〈ϕ|ψ〉 is a bounded sesquilinear form defined on the dense linear

subspace, it has a unique extension toH, namely(ϕ,ψ) → 〈ϕ|ψ〉. Thus for all Reλ < 1 we
may formally write

Ã
λ
(Z) = 1

π

∫
Z

D(z)(1 − λ)λND(z)∗ dν(z) (20)

Ã
λ
(CC) = 1

π

∫
C

D(z)(1 − λ)λND(z)∗ dν(z) = I. (21)

The operator

(1 − λ)λN = (1 − λ)
∞∑
k=0

λk|k〉〈k| (22)

is bounded when|λ| � 1. If |λ| < 1 then it is trace class operator,Dλ = H, andÃ
λ
: B(CC)→

L(H) is a phase space operator measure. IfDλ �= H, Ãλ, must be regarded as a sesquilinear
form valued mapping, that is, a GOM.

Gahill and Glauber [10] defined ans-ordered displacement operatorDs(z) := es|z|2/2D(z)
for all s, z ∈ CC. By direct calculation one gets

1

π

∫
C

〈n|Ds(z) |m〉 dν(z) = δn,m 2

1 − s
(
s + 1

s − 1

)n
for all n,m ∈ NN when Res < 1. If Res � 1, then the integral does not exist. Thus, when
Res < 1

(s := 1

π

∫
C

Ds(z) dν(z) = (1 − λ)λN (23)

whereλ = (s + 1)/(s − 1), that is,s = (λ + 1)/(λ− 1). The mappings → s+1
s−1 is bijective

on CC\{1} and the condition Res < 1 is equivalent to Reλ < 1. In the rest of this paper, we
assume that the parametersλ ands are related to each others in the above way, and we also
writeAs := Ãλ andDs := Dλ for all Res < 1

Using equation (20) we can write formally for all Res < 1 that

As(Z) = 1

π

∫
Z

D(z)(sD(z)
∗ dν(z) = 1

π

∫
Z

1

π

∫
C

ezξ̄−z̄ξDs(ξ) dν(ξ) dν(z) (24)

where π−1
∫

C
ezξ̄−z̄ξDs(ξ) dν(ξ) = D(z)(sD(z)

∗ is a (possibly unbounded) Fourier
transformeds-ordered displacement operator [10].
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5.1. Phase observables

Suppose that Res < 1 andϕ,ψ ∈ Ds . Define the angle margin of the measureAsϕ,ψ as

B([0,2π)) � X → Esϕ,ψ(X) := Asϕ,ψ([0,∞)×X) ∈ CC (25)

which determines a GOMEs. SinceR(θ)Ds = Ds it follows thatEs is covariant GOM (see
section 2.2). Thus, if Res < 1 one getsEs|n〉,|m〉(X) = csn,m(2π)−1

∫
X

ei(n−m)θ dθ where

csn,m = (1 − λ)
∫ ∞

0

∞∑
k=0

λkD(r)n,kD(r)m,k dr2 =
√
(min{n,m})!
(max{n,m})! (1 − λ)|n−m|+1λmin{n,m}

×
∫ ∞

0
e(λ−1)r2

r |n−m| L|n−m|
min{n,m}((2 − λ− λ−1)r2) dr2 (26)

when λ �= 0 or s �= −1 (see also [10], [19] or [4]). Ifs = −1 then cs=−1
n,m =∫ ∞

0 D(r)n,0D(r)m,0 dr2 = c|0〉
n,m and

(s=−1 = |0〉〈0| As=−1 = A|0〉 Es=−1 = E|0〉. (27)

From equation (26) one sees that

cs2n,0 = (1 − λ)n n!√
(2n)!

∼ 4
√
π

(
1 − λ

2

)n
n1/4 (28)

whenn→ ∞, and

cs2,0 = 1 − λ√
2

= cs0,2.

Thus,cs2,0 = cs0,2 if and only if λ ∈ RR. This implies that

Proposition 5.1. As is a symmetric GOM and Es is a quasi phase observable if and only if
λ ∈ RR and λ < 1, or s ∈ RR and s < 1.

We also see that

(1) if |λ|<1, or Res < 0, then(s is a trace-class operator with tr((s)= 1 and‖(s‖ = |1−λ|,
and it satisfies the conditions of theorem 4.1. Hence we can write

As(Z) = (1 − λ)
∞∑
k=0

λkA|k〉(Z) (29)

Es(X) = (1 − λ)
∞∑
k=0

λkE|k〉(X) (30)

csn,m = (1 − λ)
∞∑
k=0

λkc|k〉n,m. (31)

Moreover,As has an operator densityz → D(z)(sD(z)
∗.

(2) If |λ| = 1 andλ �= 1, or Res = 0, then we can writeλ = eiγ whereγ = argλ and
γ �= 0. Now(s = (1 − eiγ )R(γ ) is not a trace-class operator but it is bounded with
‖(s‖ = |1 − eiγ |. Although we can define a bounded operator valued function

z → D(z)(sD(z)
∗ = (1 − eiγ )ei|z|2 sinγD(z(1 − eiγ ))R(γ )

it does not follow thatAs andEs are operator measures. Indeed, if one choosesγ = π

thenz → tr(TD(z)(s=0D(z)
∗) = 2 tr(TD(2z)R(π)) is the Wigner function of a stateT

which is not integrable overCC for all pure states|ψ〉〈ψ| (see e.g. [20]). Thus,Ds=0 is
a proper subset ofH. Finally, it can be seen directly that equations (29)–(31) cannot be
true (takeZ = CC,X = [0,2π), andn = m in equations (29)–(31)).
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(3) If |λ| > 1 and Reλ < 1, or 0< Res < 1, then(s is unbounded and equation (20) must
be seen as a formal notation. ObviouslyAs has no operator density. From equation (28)
one sees that

sup
n∈N

{∣∣∣Es|n〉,|0〉 ([0, π/2))
∣∣∣} = ∞

whenλ ∈ RR, λ < −1, ors ∈ RR,0< s < 1, which implies thatEs andAs are not operator
measures when 0< s < 1.

(4) If Reλ � 1, or Res � 1, thenAs cannot be defined at all.

Suppose thatλ < 1. Now cs0,1 = √
π/2

√
1 − λ > 1 whenλ < 1 − 4/π ≈ −0.27. Hence,

whenλ < 1 − 4/π it follows thatEs, and thusAs , cannot be positive. If−1 < λ < 1 then
〈ϕ|As(Z)ψ〉 = π−1

∫
Z
〈ϕ|D(z)(sD(z)∗ψ〉 dν(z) for all Z ∈ B(CC) andϕ,ψ ∈ H, where

z → 〈ϕ|D(z)(sD(z)∗ψ〉 is a continuous function [18]. From this one sees that the positivity
of As is equivalent to the positivity of(s. The following statement is thus proved:

Proposition 5.2. As is positive if and only if 0 � λ < 1, or s � −1. When 0 � λ < 1 then
Es is a phase observable.

In the case 1−4/π � λ < 0 the positivity ofEs remains an open question, since although
As is not positive when 1− 4/π � λ < 0, the angle marginEs might be positive. Numerical
calculations however suggest that in this caseEs is not positive.

5.2. Phase operators

Let f : RR2 → RR be a Borel measurable function, that is, adynamical variable on the two-
dimensional phase spaceRR2, which we identify in the usual way withCC. One way to quantize
f , that is, to find a self-adjoint operator associated withf , is to replacef by the (possibly
unbounded) operator generated by the sesquilinear form

∫
C
f (z) dA(z), whereA is a GOM. In

this context, important GOMs are the Cahill–Claubers-parametrized GOMsAs , s ∈ RR, s < 1,
and the phase space observablesA|k〉, k ∈ NN.

Let us consider the quantization of the classical oscillator energy|z|2/2. If s =
−1 then As= −1 =A|0〉, and π−1

∫
C
zz̄ dA|0〉(z) = aa∗ =N + I [1]. The phase space

observable quantizeszz̄/2 antinormally. Generally, for any phase space observables one
getsπ−1

∫
C
zz̄ dA|k〉(z)= aa∗ +kI =N + (k + 1)I for all k ∈ NN [21]. If s ∈ CC and Res < 0

then

1

π

∫
C

zz̄ dAs(z) = (1 − λ)
∞∑
k=0

λk(aa∗ + kI) = N +
1

1 − λI. (32)

The GOM corresponding to asymmetric ordering is As=0 [10]. In this caseλ = −1
and (s=0 = 2R(π). As suggested in [10] nowπ−1

∫
C
zz̄D(z)2R(π)D(z)∗ dν(z) =

(a∗a + aa∗)/2, so that formally equation (32) seems to hold in this case. Also, formally,
whens → 1−, or λ → −∞, π−1

∫
C
zz̄D(z)(sD(z)∗ dν(z) → a∗a, that is, ‘the operator

integral in the limits → 1’ seems to correspond to anormal ordering (see [10]).
For any GOMAs, s< 1, and a vector stateψ ∈Ds , ‖ψ‖= 1, there exists a quasiprobability

density functiongsψ : CC → RR such asAsψ,ψ (Z) = π−1
∫
Z g

s
ψ(z) dν(z) for allZ ∈ B(CC). When

s = −1, the functiongs=−1
ψ (z) ≡ Q(z) = |〈z|ψ〉|2 is the HusimiQ-function of a stateψ. If

s = 0, thengs=0
ψ (z) ≡ W(z) = 2〈ψ|D(z)R(π)D(z)∗ψ〉 is the Wigner function of a stateψ.
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Finally, letψ ∈ Ds for all λ < 1. Then one may define the Glauber–SudarshanP-distribution
of a stateψ as follows:

P(z) := lim
λ→−∞

(1 − λ)
∞∑
k=0

λk〈ψ|D(z)|k〉〈k|D(z)∗|ψ〉

whenever the limit exists, for example, as a Diracδ-distribution.
A natural way to quantize a classical phaseθ = argz is to integrateθ with respect to a

symmetric GOM defined onB(CC). UsingA|n〉, n ∈ NN, as an operator measure one gets the
phase space phase operator |n〉.

Let s<1 and define a sesquilinear formM×M� (ϕ,ψ) → sϕ,ψ : = (2π)−1
∫ 2π

0 θ

dEsϕ,ψ(θ) = π−1
∫

C
argz dAsϕ,ψ(z) ∈ CC. Now

 s|n〉,|m〉 =
{
csn,m

i
m−n whenn �= m

π whenn = m.
If  s is bounded onM × M, then s has a unique bounded extension toH which defines a
self-adjoint operator onH (see remark 3.1). In this case we denote this self-adjoint operator
also by s and say that s is ans-ordered phase operator or ans-quantized phase angle.

For s= −1, s=−1 is the antinormally ordered phase operator, and it equals the
phase operator |0〉. The corresponding phase observable isE|0〉. If s <0, then s =
(1 − λ)∑∞

k=0 λ
k |n〉. Whens � −1 then s is a phase operator determined by the phase

observableEs, and if −1 < s < 0 then s is a bounded self-adjoint operator. In the latter
case,Es seems to be a non-positive quasi phase observable.

For s = 0 one gets the self-adjoint boundedsymmetrically ordered phase operator or the
Wigner–Weyl quantized phase angle  s=0 [6–9]. This operator is determined by the quasi
phase observableEs=0, which is not positive sincecs=0

0,2 = √
2> 1. Also Dubin and Hennings

[22] have observed that s=0 cannot be a first moment operator of a covariant POM. It is easy
to show that

cs=0
n,m = 2(n+m)/2

√
n!m!

min{n,m}∑
t=0

(
−1

2

)t
:((n +m)/2 − t + 1)

t !(n− t)!(m− t)!

for all n,m ∈ NN (these matrix elements have also been calculated in [4, 7, 19, 20, 23]).
If 0 < s < 1, orλ < −1, then using equation (28) one gets

| s|2n〉,|0〉| = |1 − λ|n n!

2n
√
(2n)!

∼
4
√
π

2

( |1 − λ|
2

)n
n−3/4 → ∞

whenn→ ∞. Thus, s cannot define a bounded operator.

6. Covariant GOMs in coherent states

LetE: B([α − π, α + π)) → L(H), α ∈ RR, be a covariant GOM and (cn,m) be the structure
matrix of E. Assume that|z〉 ∈ D for all z ∈ CC. Following the proof of theorem 7.1 of [11]
one can prove the next theorem.

Theorem 6.1. If limn→∞ cn,n+k = 1 for all k ∈ ZZ, then the complex measure X →
lim|z|→∞ E|z〉,|z〉(X) is concentrated at the point argz + 2πl, where l ∈ ZZ is such that
argz + 2πl ∈ [α − π, α + π).
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If lim n→∞ cn,n+k = 1 for all k ∈ ZZ, then

lim
|z|→∞

∫ α+π

α−π
θm dE|z〉,|z〉(θ) = (argz + 2πl)m

for all m ∈ NN and we say thatE behaves well in the classical limit (of coherent states).
The canonical phase observableEcan and the phase space observablesE|n〉, n ∈ NN,

behave well in the classical limit [11]. It can be shown (see appendix G of [4]) that
limn→∞ csn,n+k = 1, k ∈ NN, if |λ| � 1 andλ �= 1, or Res � 0.

Since|z〉 ∈ Ds for all z ∈ CC and whens < 1 we see that the quasi-probability density
function

gs|z〉(z
′) = (1 − λ) e−(1−λ)|z′−z|2

= (1 − λ) exp(−(1 − λ)(|z′|2 + |z|2 − 2|zz′| cos(argz′ − argz))) (33)

for all z′ ∈ CC is positive, that is, a probability density. Again, denotingx := |z′| andθ := argz′,
the phase probability distribution (see also [19, 23])

hs|z〉(θ) := 1

2π

∫ ∞

0
gs|z〉(xeiθ ) dx2 = 1

2π
e−(1−λ)|z|2 +

√
1 − λ|z| cos(θ − argz)

× exp(−(1 − λ)|z|2 sin2(θ − argz))
1

2
√
π

erfc(−√
1 − λ|z| cos(θ − argz)) (34)

which tends to a 2π-periodic Diracδ-distributionδ2π(θ − argz) when |z| → ∞, or when
s → 1−(λ → −∞). Thus, ifs< 1 all quasi phase observablesEs behave well in the classical
limit of coherent states. Especially, the quasi phase observableEs=0 of the Wigner–Weyl
quantized phase angle s=0 behaves well in the classical limit. Note that in the limits → 1−
we can formally write the angle margin of the Glauber–SudarshanP-distribution in the form
hs=1

|z〉 (θ) = δ2π(θ − argz) for all z ∈ CC andz �= 0.
It has been noted earlier [11, 24, 25] that theminimum variance, or the Ĺevy measure, is

a good measure for phase uncertainty. Letgn: RR → [0,∞] be a periodic probability density
for all n ∈ NN. If lim n→∞ gn(θ) = δ2π(θ − α) then the minimum variance ofgn can be
approximated by the integral∫ π

−π
θ2gn(θ + α) dθ (35)

whenn� 0 [11].
From equation (34) one sees that we may always assume that argz = 0, that is,|z〉 = |r〉

wherer := |z|. Whenr � 0 we can approximate the probability distributionhs|r〉(θ) by the
function

h̃s|r〉(θ) := 1√
π

√
1 − λre(λ−1)r2θ2

(36)

and we see that the minimum variance ofhs|r〉(θ) is

VAR(Es, |z〉) ∼ 1

2(1 − λ)|z|2 = 1 − s
4|z|2 . (37)

Using the results of [11, 26] one sees that for the canonical (or Pegg–Barnett) phase
distribution

hcan
|r〉 (θ) := 1

2π
e−r2

∞∑
n,m=0

rn+m√
n!m!

ei(n−m)θ ∼
√

2

π
re−2r2θ2

(38)
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the minimum variance is

VAR(Ecan, |z〉) ∼ 1

4|z|2 . (39)

Especially, for the Wigner phase distribution (λ = −1 or s = 0)

hs=0
|r〉 (θ) ∼ hcan

|r〉 (θ) (40)

and

VAR(Es=0, |z〉) ∼ VAR(Ecan, |z〉) (41)

when |z| � 0. In references [19, 23] differences between the phase probability densities
hcan

|r〉 (θ)andhs=0
|r〉 (θ)have been illustrated using pictures. For the phase space phase observables

E|k〉 one gets [11]

VAR(E|k〉, |z〉) ∼ k + 1

2|z|2 (42)

for all k ∈ NN.
Since the probability density ofX → 〈r|E|k〉(X)|r〉 is of the form [11]

h
|k〉
|r〉(θ) := 1

2πk!

∫ ∞

r2
e−vvk dv +

1

2πk!
e−r2 sin2 θ2r cosθ

×
k∑
n=0

(
k

n

)
(r2 sin2 θ)k−n

∫ ∞

−r cosθ
e−u2

u2n du (43)

one gets for allλ <1 that

hs|z〉(θ) = (1 − λ)
∞∑
k=0

λkh
|k〉
|z〉(θ). (44)

Also by direct calculation

VAR(Es, |z〉) ∼ (1 − λ)
∞∑
k=0

λk VAR(E|k〉, |z〉) (45)

when|z| � 0. Thus, whenλ > 0,λ ≈ 0

hs|z〉(θ) ≈ h|0〉
|z〉(θ) + λh|1〉

|z〉(θ) + · · ·
and

VAR(Es, |z〉) > VAR(E|0〉, |z〉)
when|z| � 0. Thus, in this case the POMEs seems to be a phase observable describing an
unsharp coherent state phase measurement (compared to the measuredE|0〉).

To conclude we note the following ordering between the minimum variances of different
GOMs in large amplitude coherent states:

VAR(Es, |z〉)→ 0 s → 1 −
VAR(Es, |z〉) < VAR(Es=0, |z〉) ∼ VAR(Ecan, |z〉) 0< s < 1

VAR(Es=0, |z〉) < VAR(Es, |z〉) < VAR(E|0〉, |z〉) − 1< s < 0

VAR(E|0〉, |z〉) = VAR(Es=−1, |z〉) < VAR(Es, |z〉) s < −1

VAR(Es, |z〉)→ π2/3 s → −∞.
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7. Summary

A phase shift covariant GOM

E(X) :=
∞∑

n,m=0

cn,m
1

2π

∫
X

ei(n−m)θ dθ |n〉〈m| X ∈ B([0,2π)) (46)

is determined by a complex matrix(cn,m) with cn,n ≡ 1. It describes a measurement of the
phase argz of a coherent state|z〉 if the measureE|z〉,|z〉 is a probability measure, since the
natural covariance conditionE|e−iαz〉,|e−iαz〉(X) = E|z〉,|z〉(X ⊕ α) is now fulfilled. Also for a
number state|n〉 the phase distribution

E|n〉,|n〉(X) = 1

2π

∫
X

dθ (47)

is totally random.
If the structure matrix(cn,m) is positive semidefinite thenE is a POM, and one may

associate a probability measureX → 〈ψ|E(X)ψ〉with it for all vector statesψ ∈ H, ‖ψ‖ = 1.
Examples of covariant POMs are the canonical phase observableEcan and the phase space
phase observablesE|k〉, k ∈ NN.

For any covariant GOM one may define the first moment form as

 = πI +
∞∑

n�=m=0

cn,m
i

m− n |n〉〈m|. (48)

It is not necessarily a bounded operator. If is a self-adjoint operator it has a unique spectral
measureF. It should be noted that determines also the GOME uniquely. Thus, ifE is a
covariant POM it is natural to ask which of the two POMs,E or F, is the associated phase
observable of the self-adjoint operator . There are some reasons which supportE to be a
phase observable:

• E is phase shift covariant,F is not;
• E gives a random distribution in number states,F does not;
• the support ofE is always the whole phase interval [0,2π ] whereas the support ofF may

be a proper subset of [0,2π ].

If E is not positive, there are vector statesψ for which Eψ ,ψ cannot be defined or it is not a
probability measure whereasFψ ,ψ is always a probability measure. ButF is not covariant in
this case also.

The number operatorN and satisfy the correspondence principle. Namely, a formal
relation

N − N = iI − i
∞∑

n,m=0

cn,m|n〉〈m| (49)

corresponds to the classical Poisson bracket

{H,φ}PB = 1 − 2πδ2π(θ). (50)

The Cahill–Glaubers-parametrized covariant GOMEs is determined by the structure
matrix

(
csn,m

)
for all s ∈ CC and Res < 1. An Es is symmetric if and only ifs ∈ RR (ands< 1).

If 0 � s < 1 thenEs is not positive. Ifs < 0 thenEs is a normalized operator measure and it
can be represented as the sum

Es(X) = (1 − λ)
∞∑
k=0

λkE|k〉(X) (51)
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whereλ = (s + 1)/(s − 1). Such anEs is a phase observable (POM) ifs � −1.
The first moment form s is not a bounded operator if 0<s < 1. It is a bounded self-

adjoint operator whens� 0. If s= −1 we say that s=−1 =  |0〉 is the antinormally ordered
phase operator, and ifs = 0 we say that s=0 is the symmetrically ordered phase operator or
the Wigner–Weyl quantized phase angle. The structure matrix

(
cs=0
n,m

)
of Es=0 is not positive

semidefinite sincecs=0
0,2 = √

2> 1. Thus, s=0 is not determined by a phase observable, that
is, by a phase shift covariant POM.

The Gahill–Glauber GOMEs gives a (phase shift covariant) probability distribution

X → Es|z〉,|z〉(X) (52)

in a coherent state|z〉 for all s< 1. Thus,Es may represent a coherent state phase measurement
although it is not a POM for alls < 1. Also Es gives a random phase distribution in number
states. When|z| → ∞, Es|z〉,|z〉 tends to a probability measure concentrated at the point argz.
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