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Abstract

We represent quantum phase observables as phase shift covariant normalized
positive operator measures. The phase operators are the first moment operators
of the phase observables. A phase operator determines the associated phase
observable uniquely. We show that the Cahill-Glaub@rdered phase
operators are determined by phase shift covariant generalized operator
measures, which are ordinary operator measures wheneyesReand phase
observables whem < —1. The Wigner—Weyl quantized phase operator is

not determined by any phase observable. We investigate the classical limit of
covariant (generalized) operator measures in coherent states.

PACS numbers: 03.65w, 02.03—f, 05.70.Fh, 42.50.Dv

1. Introduction

In the textbook presentation of quantum mechanics, a physical quantity, an observable, is
described by a self-adjoint operator or, equivalently, by a spectral measure on a Hilbert space.
It is well known that this description is too narrow and that its natural extension is given
by the concept of a positive operator measure. In this wider interpretation, quantum phase
observables are represented as phase shift covariant normalized positive operator measures
[1-3].

The traditional quantization rules associate self-adjoint operators to classical dynamical
variables. In the case of phase, the natural dynamical variable to be quantized is the angle
variable of the two dimensional phase space (for an overview, see e.g. [4] or [5]). In this paper,
we investigate the possibility to represent some of such quantized phase angles as the first
moment operators of phase observables.

The first moment operator defines the related phase observable uniquely. Thus, it is
natural to consider it as a phase operator. Conversely, to call a bounded self-adjoint operator
a phase operator, it should be the first moment operator of a phase observable, since the
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spectral measure of such an operator is never phase shift covariant and therefore cannot be
considered as a phase observable. For example, the Wigner—Weyl quantized phase angle has
been suggested to be a phase operator [6—9] but, as we will see, it is not determined by any
phase observable.

Cahill and Glauber [10] defined theordering rule which can be used to quantize the
phase angle and to get the so-calkedrdered phase operators. We will show that this
guantization leads to phase operators only for some values of the parameil, the
non-positive covariant normalized generalized operator measures determined-oydbecd
phase operators behave well in the classical limit of coherent states.

2. Phase observables

2.1. The basic theorem

Let H denote a complex separable Hilbert space with a fixed Hasise H|n € N} and
let £(H) denote the set of bounded operatorsnFor anyA € L(H) we write A, ,, instead
of (n|Ajm) to shorten the notations. Define the lowering and the number operatars-as
Yool oNn+1n)(n+1andN = a*a = Y .o on|n)(n|, respectively, with their usual domains
D(a) = {¢p € H| Y Zonl(nl¢)[* < oo} andD(N) := {¢ € H| Y72 on?l(nl$)|* < oo},
and letR(9) = €V 9 € R, be a phase shifter.

Let Q be a Borel subset of the complex plaBeand let3(€2) denote ther-algebra of
the Borel subsets a2. We say that a mapping: B(2) — L(H) iS anoperator measure
if it is o-additive (in the weak operator topology) and ti#ais normalized if E(2) = 1.

If E(X)=E(X)* or E(X)> O for all X € B(R2) we say thatt is self-adjoint or positive,
respectively. The fact that an operator meadur#8(2) — L(H) is normalized and positive
equals the fact that for any unit vectgr the mappingX — (¥ |E(X)y) is a probability
measure. A positive normalized operator measure (P@MB(Q2) — L(H) is aspectral
measure if E(X)%2 = E(X) forall X € B(Q).

An operator measure®: B([a — w, a + )) — L(H), wherea € R, is covariant under
the phase shifts generated by the number opehaibr

R(O)E“(X)R(O)* = E“(X & 0) (1)

forall X € B(a — n,a + 7)) and for alld € [0, 27), whereX @0 = {x € [ — 7, a + )
| (x —0)(mod 27) € X}. A phase observable is a covariant POME: B([0, 27)) — L(H).
An important example of phase observables isdhenical phase observable [1, 2, 11]. It
can be defined by using the London phase states

1 X
0) = ——Y ¢gn
16) m;‘) In)

as

(.¢]
Ecan(X) = / 10)©@ldo = > 1 / =m0 4o |n) (m| X € B([0, 27)). 2)
X 2 Jx
n,m=0
Next we generalize the definition of a phase observable.

We note thatany phase interval , «+7), € R, isan equally good set of measurement
outcomes of a phase observable a2ff) since we only change the parametrization of the
unit circle. However, as we will see in section 3, the first moment operators of different
covariant POMs based on intervats + 7, o + 7) and [8 — &, B + ), a # B, differ. Thus,
for all « € R we define amw-shifted phase observable E¢ as a covariant POM based on the
a-shifted interval & — 7, o + 7).
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Following the proof of phase theorem 2.2 of [3] one gets the structure theorem of covariant
normalized (not necessarily positive) operator measures:

Theorem 2.1. Fix « € R and let E*: B([a — 7, « + 7)) — L(H) be a covariant normalized
operator measure. For any X € B([a — 7, a + 7)),

o _ (n—m)0
E*(X)= Y ey /X e do|n) (m| ©)

n,m=0

where the series converge in the weak operator topology (and the summation order is
irrelevant), and where ¢ € C and cp, = 1 for alln,m € N. If E¥ is self-adjoint then

Cn,m = Cm,n-

We say that the matrikc, m)n.men Of theorem 2.1 is thetructure matrix of E“. If E*
is ana-shifted phase observable we say tl@t,,)n.men IS the phase matrix of E*. For
any «-shifted phase observabl* the phase matrixc, ) is positive semidefinite, that is,
all the principal minors ofc, ,,) are non-negative (see [11]). In particular, this implies that
lcn.m| < 1foralln,m € N. Conversely, if(c,.») iS a positive semidefinite complex matrix
with the diagonal elements equal to one then the map

E*: B(la —m,a+m)) - L(H)

o0
1 .
X — E“X) = Z C”*’”Z/Xel(n_mw do|n) (m|

n,m=0

defines am-shifted phase observable for alle R (see phase theorem 2.2 of [3]). This shows
that there is a bijective mapping from the set of positive semidefinite complex maticgs

with the diagonal elements equal to one to the set of the cld#&ses$ o € R} of «-shifted

phase observables where af¥ in the same class have the same phase matrix. In the rest of
this paper we indentify the-shifted phase observables which have the same phase matrix and
briefly call thea-shifted phase observables as phase observables. We also drop out the index
a from the symbolE®.

2.2. Generalized operator measures

One may ask if the converse statement of theorem 2.1 is true. We study this question next.
Let (cn,m)n.men be an infinite-dimensional complex matrix and suppose ¢ghat= 1.
Let M :=lin{|n) | n € N} and define the following function for a}i, ¥ € M:

o0
R0 Cpy®) =Y cnm€” ™ pln)m|y) € C.

n,m=0

For a fixedx € R, define
1 o+
Eosllo—marm)i=so [ Coy@® s = (ol
Then(p, ¥) — E, y([a — 7, a + 1)) is a bounded sesquilinear form @r which is a dense
linear subspace 6f. Hence it has a unigue bounded extensioH tehich is(p, ¥) — (@|¥).
Thus, we can formally writéZ ([« — 7, « + 7)) = 1.
Consider the following sesquilinear form defined for all (Borel) sub¥etf o — 7, o +7):

1
MX M3 (@, ¥) = Egy(X) = Z/ Cy.y(6)dO € C.
X
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The form (¢, ¥) — E, y(X) need not be bounded, so that it does not necessarily
define a bounded operator ¢a. Also it is possible that there are somey € H\M

for which the mapping — >°2°, _ocum€" ™% (p|n)(m|y) cannot be defined forod
almost all6 e R, and if it is defined for some’, y' € H\M, the functionf

> o0 Cn.m€ "™ (¢/|n) (m|y') need not be integrable over |- r, « + ). To conclude,

the formal notations

00 1 _

_ (n—m)0
E(X) = n §m:0cn,m—2 /X ¢ dé|n)(m| (4)
E(la —m,a+m) =1 (5)

must be understood as the sesquilinear forms defined on the largest possible Tiomain
where for allp, v € D, Y, _o cn.m€ ™% (p|n) (m|y) is defined for d-almost allg € R

and(2r)~1 foz” > 0 Cnm€ "™ (@ln) (m|y) d6 = (p|). Note that always\t € D and
D is a dense linear subspacetof

Let H1 1= {p € H| X pool(nlp)| < oo} and suppose that, .| < b < oo for all
n,m € N. Then| 35 _qcnm€" " (pln) (m|y)| < b 3020 [(nlp)| Xopo l(m|y)] for all
¢, ¥ € Hiandf € R, so that, in this caset{; € D. Next we define the concept of a
generalized operator measure.

Let £ be a linear subspace &f, and letSL(K, K; C) be the set of sesquilinear forms
from K x K to C.

Definition 2.1. We say that a mapping G: B(2) — SL(K, K; C) is a generalized operator
measure if for all ¢, W € K the mapping

B() > X — [G(X)](p,¥) € C

is a complex measure. If K is dense and [G(Q)](p, ¥) = {(@|¥) for all ¢, ¥ € K we
say that G is normalized and denote G(2) = I. If [G(X)]|(p, ¥) = [G(X)](W¥, @), or
[GXOI(W, ) = 0, for all X € B(RQ) and for all ¢, € K we say that G is symmetric, or
positive, respectively.

If for a normalized generalized operator measure (GOM)

G* B(r —a, 7 +a)) - SLIK, K; C),
a € R, the conditions R(O)K = K and

[G*"(X1(RO) ¢, RO) Y) = [G*(X @ ))](p, ¥)
hold for all 0 € [0,2n),X € B([x —a, 7 +)) and ¢, ¥ € K, then Gy is (phase shift)

covariant.

Following the proof of phase theorem 2.2 of [3] it is easy to show tha} if|m) € K then
[G*CO1(n), Im)) = dum ()7t [, €7~ do for all X whered,, ,, € C. If [n), |m) € K
foralln, m € Nwe say thatd, n)n.men IS thestructure matrix of a covariant GOM;*. Note
thatd, , = 1if |n) € K.

SinceR(0)D = D it follows that E defined in (4) is a covariant GOM an@, ,,,) is its
structure matrix. £ is symmetric or, equivalently,, ,, = ¢, for all n, m € N, we say that
E is aquasi phase observable. The name quasi phase observable comes from the observation
that for any quasi phase observabland for a unit vectoyr € D the mapping — Ey 4 (X)
is a quasi probability measure, that is, a normalized real measure. An example of a quasi
probability measure is the polar coordinate margin measure of the Wigner function of a state
(when it exists). Indeed, as will be shown in section 5.2, this measure is related to a certain
qguasi phase observable.
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Finally, if E is positive then the matriXc, ) is positive semidefinite. Hence, €
Epo(X) < Egpp(la —m,a+m)) = lell? and(g, ¥) — E, (X) is bounded onM. In this
caseD = H and the sesquilinear forfi(X) can be regarded as a bounded operator with the
unique matrix element ) iy (X) = cpm(27) 2 [, €79 do, n,m e N. The mapping
E:B(la —m,a+m)) — L(H) iso-additive (see the proof of phase theorem 2.2 of [3]). Thus,
equation (4) defines ar{shifted) phase observahler E(X).

3. Phase operators

Foranyx € Rlet E: B([a — 7, + 7)) — L(H) be a covariant normalized (not necessarily
positive) operator measure, and Ef, , denote the complex measuke — Ey ,(X) :=
(V|E(X)e). Thefirst moment operator of E is defined as

a+m

(| D) = / 0 dEy.,(0) ——

-7
The operato is bounded, and iE is self-adjoint thend is self-adjoint. From theorem 2.1
one gets

00 .
| .
P=al+ Y cum (=M@= 1) (1| (6)

m—n
n#m=0

which implies that
cnm = Qpmi(n — m)ei(”_m)(”_“) n#m. (7

Let A be abounded operator for whieh , = « foralln € Nand forsome € R. Define
anp =1 anda, , = Appmi(n —m)e@=m@=0 for all n # m. If the matrix (@ m)n,men
is positive semidefinite theki - >"° g anm(21) 72 [ €779 do|n) (m| is an @-shifted)
phase observable whose first moment operatar i$his shows that already the first moment
operatord of a phase observabledetermined: uniquely. Hence, if is a phase observable
we say thatb is thephase operator associated with the phase observahle

Remark 3.1. Let (¢, m)n.men be an infinite-dimensional complex matrix with , = 1 and

fixx e R. ForallX € B(la — 7, a+ 7)) let E(X) be the sesquilinear form defined on

D (see equation (4)). Integrating the identity function with respect to the complex measure
X — E,y(X), ¢, ¥ € M, yields the following sesquilinear forme first moment form.:

o+

T o 1 atmr
(@, ¥) > Dy y 1= / 0dEyy ()= ), camo / €= d6 (p|n) (m| ).
a—1 n,m=0 a—1

Ifitis bounded therig, ¥) — @, 4 defines the bounded operator

o0 .
| .
O =al + Z Cnm =M@= 1y () (8)
m—n
n#m=0

and we say thab is thefirst moment operator of the covariant GOMe. If ¢,y = ¢, n, m €
N, then® is self-adjoint. Note that any bounded operatord, , = «, is the first moment
operator of a unique covariant GOM based@r-r, « +7) which has the matrita, u)n,men,
ann =1, apm = Apmi(n —m)d =M= asjts structure matrix.

Remark 3.2. Let E be a covariant GOM based o# | 7, « + ) and(c,_») be its structure
matrix. Letyp, v € M. Itis easy to see that

Pygy — Pyny =i[(@lY) — Cyy (@ —m)]. 9
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Since for allp, v € M

a+mw
/ 2182, (0 —a + ) dEy  (0) = Cyp y (¢ — 1)
o—7r

whered, (0) is a 2r-periodic Dirac delta distribution, the expression (9) corresponds to the
classical Poisson bracket

{H,ptpe=1— 27182, (0 — + 1) (10)

whereH is the classical oscillator energy ands [« — 7, o + 1) is a single-valued classical
phase (see section Il of [4]).

Remark 3.3. The phase operateb of a phase observablg based ond — 7, + ) is
self-adjoint and bounded with

(a—m) <D< (a+m)l.

Let F be the unique spectral measuredaf Since no phase observable is projection valued it
follows thatE # F.

The conventional interpretation of quantum mechanics identifies self-adjoint operators
and observables. One might thus consider the spectral meastie as a phase observable.
However, there are several reasons Wwhgannot describe a quantum phase observable:

(1) F does not obey the phase shift covariance condition which is essential for the
interpretation of phase measurement statistics. Although the first moment operators
of E andF coincide, [ 6 dE(9) = [ 6 dF(6), the other moments are not the same. For
example, [ 62dE(9) is strictly greater thar{/ 0 dE(9))?> = [62dF(9) (see e.g.[12,
appendix, section 3]). This means, in particular, that the moments of a phase probability
measureX — tr(E(X)T) related to a measurement of the phase observalrie state
T (which is a positive trace-one operator) are not the moments of the probability measure
X — tr(F(X)T).

(2) The support of is always the intervalf — =, o + 7] whereas in many cases the spectrum
of ® (or the support of) is a proper subset of[— , « + 7]. For example, in the case of
the trivial phase observabRyy (X) = (27) "1 fx do 1, X € B([0, 27)), the probability
measureX — tr(T Eyiv(X)) in a stateT is uniformly distributed on [027) and, thus,
describes a trivial phase measurement where one cannot get any information, for example,
from the phase of a large amplitude coherent state. The support of the spectral measure
Friv of the phase operatdryiy, = 71 is the one-point s€tr}, so that it is hard to consider
Fiiy as a phase observable.

(3) Using the fact thalc,, ,»| < 1,n, m € N, for the phase matrix elements Bf one easily
calculates that

(n|®?n) — ((n|®[n))? = i tennl® 22
~n-m? 3
m#n

which shows thaF is never random in number states. On the other hdhdiways gives
the random phase distribution in number states.

Finally, note that there are realistic measurement schemes constructed for the measurements
of different phase observables. In particular, this applies to all the so-called phase space phase
observable€!™, n € N [13]. Actually EI9 (or the angle margin of the Husingl-function)

has already been measured in some states using a double homodyne detection.
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Example 3.1. Consider the first momentoperator of the canonical phgggor the Garrison—
Wong-Galindo operator [14-16])

o0 .
[
Dcan= .
cn=71+ ) ——|n)m] (11)
n#m=0
Its spectral measuré.,nas well asEcanhas the support [@7], and they both behave well in
the classical limit of coherent states [11, 14, 17]. However, @ialyis covariant, and thus,

describes a true phase observable.

Remark 3.4. Let A be a bounded self-adjoint operator with) , = o« andE be its (unique)
qguasi phase observable based en{x,«a + 7). Let F be a spectral measure af The
situation differs from the case of a phase operator sihogay not be positive. Hence, the
quasi probability measur® — Ey 4 (X), ¥ € D, |[¥| = 1, may get negative values and,
thus, it cannot be considered as a probability measure. Still the me¥isurely, 4 (X) is a
probability measure.

As we shall see in section 5.2 the symmetrically ordered phase operator (the Wigner—-Weyl
guantized phase angle) is determined by a quasi phase observable which is not a POM. Its
spectral measure has been suggested as a phase observable (although it is not covariant), since
its support seems to be the whole intervaldf] and it behaves well in the classical limit of
coherent states [6—9]. The spectral measure of the symmetrically ordered phase operator does
not give a random phase distribution in number states [6, p. 458].

4. Covariant angle margins of the phase space operator measures

Let D(z) := €4 ~% 7 e C, be a unitary shift operator and B(C) — [0, ] be the
two-dimensional Lebesgue measure. For any trace class oparatat(H)

1/ D(2)AD(z)* dv(z) =tr(A)I (12)
T Jc

holds (see e.g. [18]). If t¢A) = 1 then one can define the following normalized operator
measure:

B(C)> Z+ AXZ) = %/ D(z)AD(2)* dv(z) € L(H) (13)
Z

with the associated operator density
C>z+ D(@)AD)* € LIH). (14)

We say thatA? is anoperator ordering measure Or aphase space operator measure and A
is thegenerator of A®. If A = Tis a state them” is positive, and it is called phase space
observable. . _

Writing C > z = |z|€39 = r&?, (r,0) € [0, 00) x [0, 27), we may define the polar
coordinate angle margin measure/ft:

B(0,27)) 3 X > EA(X) = A2([0, 00) x X) € L(H). (15)

If EA is covariant (under phase shifts) ther® is so-calledcovariant operator ordering
measure [4]. If the angle margirE” of a phase space observallé is covariant we say that
ETis aphase space phase observable. Theorem 4.1 of [3] states that for any stdtthe angle
marginE” of a phase space observadlé is a phase observable if and onlyfifs of the form

T =" hilk) (k]
k=0
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wherer; > 0,k € Nand) [2,i = 1. Especially, wherl" = [k)(k|, k € N, we write
AT = AW andET = E®. Using theorem 2.1 and the proof of theorem 4.1 of [3] one can
prove the following generalization:

Theorem 4.1. Let A be a trace-one operator. Then the angle margin E® of a phase space
operator measure A is covariant if and only if the generator A of A® is of the form

A=Y k) (k]
k=0

where iy € C, k € N, Y 2o lhi| < ocoand Y 2o =1

In the context of theorem 4.1 one may write

o0
A% =" Al (16)
k=0
o
EA =Y " EW (17)
k=0
o0
an’m = Z )ch,‘,]fln n,meN (18)
k=0

(with the convergence in the weak operator topology) whéﬁé,) is the structure matrix of
E'®). From [3] one gets for alt, m, k € N that

R (L qymaxOk—n}+max0.k—m) (min{n, k) (min{m, k})!
nm (max{n, k) (max{m, k})!

(0.¢]
x/ e_xx(lk_”‘ﬂk_m‘)/zL‘rf];ﬂ’k}(x)L‘k_m‘ (x) dx (19)
0

min{m,k}

whereL{ is the associated Laguerre polynomial.

5. Cahill-Glauber s-ordered phase operators

Letr € C,r €[0,00),6 € [0, 27) andn, m, k € N. One can show (see e.g.[10]) that when
A#0

> k _ (mln{nvm})| 9\ |In—m|y min{n,m}
k;x D(r)mkD(r)m,k—,/i(ma X{n,m})!(l ayln=mly,

xgh=brtnomiplnnl (@ —a - 272

min{n,m

and
T “a 3k e? % drPd
/0 Z/o =0 R0 D 0

[em@ = a2 €LY (2~ 4 — A Hyr?) dr? when # 0
5n,mn_1! fooo e—r2r2n dr2 whenr =0
= 8n.m if and only if ReA < 1.
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Suppose that Re < 1 and letD” consists of those vectogs v for which the sequence

P
P Zkk«plD(z)lk)(kID(z)*W)
k=0
converges fov-almost allz € C and

1 o0
—/(1—?») E @I D(@) k) (k| D(2)*[¥) dv(2) = (g¥).
7 Jc

k=0

Now M C D* andD* is dense linear subspacesf Also the coherent stat¢g = D(z)|0),
z € C, are elements ab*. Thus, one can define for all (Borel) subsgtsf C a sesquilinear
form onD* as

- 1 s
(0. 9) > Ay (2) = = /Z<1— 2 Y WM eI D@)IK) kI D(2)* ) dv(z).

k=0

Since(g, V) — A;,w(C) = (p|y) is a bounded sesquilinear form defined on the dense linear
subspace, it has a unique extensiofittmamely(g, ) — (¢|y). Thus for all Rer < 1 we
may formally write

ANZ) = % /Z D(z)(1 — MAN D(2)* dv(z) (20)

ANC) = % / D)1 — WAV D) *dv(z) = I. (21)
C

The operator
A=A =@ =1 > Ak (K| (22)
k=0

is bounded whei| < 1. If |A| < 1 thenitis trace class operat®r: = H, andA™: B(C) —

L(H) is a phase space operator measuré £ H, AA, must be regarded as a sesquilinear
form valued mapping, that is, a GOM.

Gahilland Glauber [10] defined arvrdered displacement operator D*(z) = e”z|2/2D(Z)
for all s, z € C. By direct calculation one gets

1 s 2 s+1\"

— [ (nlD’(z) m) dv(z) = 8n,m ——

7w Jc l-s\s—-1
foralln,m € Nwhen Re < 1. If Res > 1, then the integral does not exist. Thus, when
Res <1

A=t / D' (@) dv(z) = (1 — AN (23)
T Jc

wherer = (s +1)/(s — 1), thatis,s = (A + 1)/(A — 1). The mapping +— % is bijective
on C\{1} and the condition Re < 1 is equivalentto R& < 1. In the rest of this paper, we
assume that the parameterands are related to each others in the above way, and we also
write AS == A* andD® := D* for all Res < 1

Using equation (20) we can write formally for all Re< 1 that

AS(Z) = %/ZD(Z)ASD(Z)* dv(z) = %/Z%/(CeZE_Z_SDS(S)dv(S)dv(Z) (24)

where 771 [, DS (E)du(E) = D(z)AsD(2)* is a (possibly unbounded) Fourier
transformed-ordered displacement operator [10].
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5.1. Phase observables

Suppose that Re< 1 andg, v € D°. Define the angle margin of the measwgw as
B([0.27)) > X > E}, ,(X) = A} ,([0,00) x X) € C (25)

which determines a GOM?, SinceR(e)DS D* it follows thatE* is covariant GOM (see
section 2.2). Thus, if Re < 1 one gets}, |, (X) = ¢}, n(2m)7t [ =m? dg where

¢ = (1= 1) / ZAkD(r>nkD(r>mkdr s

x /0 g (@ = 2= 27 dr? (26)
wheni # 0 ors # —1 (see also [10], [19] or [4]). Ifs = —1 thenc};, ! =
fo D(r)n.0D(r)m.0dr? —c ’,and

A= =10) (0| A=t =40 =l = B0 (27)
From equation (26) one sees that

s . n 1-1

o= (1—=1) ¢<2—Nf ( ) nt/4 (28)

whenn — oo, and
0= % = Cp2-
Thus,c} o = c§ , ifand only if A € R. This implies that
Proposition 5.1. A® is a symmetric GOM and E® is a quasi phase observable if and only if
reRand ik <1 ors e Rands < 1.
We also see that

(1) if|A] <1,0rRes <0, thenA;is atrace-class operator witliAr,) = 1 and|| Ag|| = |1—A],
and it satisfies the conditions of theorem 4.1. Hence we can write

AS(Z)=@1-n ) 1AM (z) (29)
k=0
ES(X)=(1-21) Z AFER (x) (30)
k=0
=@—2 ) e, (31)
=0

Moreover,A* has an operator density— D(z) A; D(z)*.

(2) If |A] = 1 andx # 1, or Res = 0, then we can write. = €” wherey = argx and
y # 0. NowA; = (1 — €¥)R(y) is not a trace-class operator but it is bounded with
| As]l = |1 — €. Although we can define a bounded operator valued function

2+ DEADE)* = (L —&)dl S D(e(1— &) R(y)
it does not follow thatd* andE* are operator measures. Indeed, if one chogsesn
thenz — tr(TD(z) As=oD(2)*) = 2 tr(TD(2z) R(7r)) is the Wigner function of a staté
which is not integrable oveE for all pure statesy) (y| (see e.g.[20]). Thus>*=0is

a proper subset oft. Finally, it can be seen directly that equations (29)—(31) cannot be
true (takeZ = C, X = [0, 27), andn = m in equations (29)—(31)).
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(3) If |A] > 1and Re. < 1, or 0< Res < 1, thenA; is unbounded and equation (20) must
be seen as a formal notation. Obvioudlyhas no operator density. From equation (28)
one sees that

S‘iﬁ{ B0 (0. 7/2)|} = o0

wheni e R, A < —1,0rs € R,0 < s < 1, which implies that* andA® are not operator
measures when @ s < 1.
(4) IfRex > 1, or Res > 1, thenA® cannot be defined at all.

Suppose that < 1. Nowcp , = JT/2/1— A > 1whenh < 1—4/7 ~ —0.27. Hence,
wheni < 1 — 4/ it follows that E°, and thusA®, cannot be positive. 1 < 1 < 1 then

(| A*(Z2)¥r) = n_lfz(gaID(Z)ASD(z)*lﬂ)dv(z) forall Z € B(C) andg, v € H, where

z = (p|D(z) Ay D(z)*v) is a continuous function [18]. From this one sees that the positivity
of A% is equivalent to the positivity oA,. The following statement is thus proved:

Proposition 5.2. A® is positive if and only if 0 < A < 1, ors < =1 When 0 < A < 1then
E* is a phase observable.

Inthe case +4/7 < A < 0the positivity ofE* remains an open question, since although
A* is not positive when + 4/7 < A < 0, the angle margia*® might be positive. Numerical
calculations however suggest that in this cASEs not positive.

5.2. Phase operators

Let f: R?> — R be a Borel measurable function, that isyaamical variable on the two-
dimensional phase spaRg, which we identify in the usual way wite. One way to quantize
f, that is, to find a self-adjoint operator associated witlis to replacef by the (possibly
unbounded) operator generated by the sesquilinear fprfi(z) dA(z), whereA isa GOM. In
this context, important GOMs are the Cahill-Claubparametrized GOM4*,s e R, s < 1,
and the phase space observabiés, k € N.

Let us consider the quantization of the classical oscillator enerfy2. If s =
—1 then A*="1=A0 and 7! [, z2dA%(z) = aa*=N+1 [1]. The phase space
observable quantizeg /2 antinormally. Generally, for any phase space observables one
gets:r‘lf(C 2zdAR) (z) =aa*+kI =N+ (k+1)I forall k € N[21]. If s € C and Res < 0
then

1 — S - * 1
;/szdA @=01-1) 3aa HKD) =N+ 1. (32)

k=0 =4

The GOM corresponding to @mmetric ordering is A*=C [10]. In this caser. = —1
and A’=0 = 2R(7). As suggested in [10] nowr ! [ zzD(z)2R(7)D(z)* dv(z) =
(a*a + aa™)/2, so that formally equation (32) seems to hold in this case. Also, formally,
whens — 1—, orx — —oo, 71 fC zzD(2) A*D(z)* dv(z) — a*a, that is, ‘the operator
integral in the limits — 1’ seems to correspond tow@rmal ordering (see [10]).

Forany GOMA®, s < 1, and a vector statg € D*, ||| = 1, there exists a quasiprobability
density functiorgy,: C — Rsuchast), ,(2) =7~ [, ¢}, (z) dv(z) forall Z € B(C). When

s = —1, the functiongff‘l(z) = 0(z) = |{z|¥)|? is the HusimiQ-function of a statey. If

s=0, thengffo(z) = W(z) = 2(¥|D(z)R(r) D(z)*yr) is the Wigner function of a staté.
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Finally, lety, € D* for all » < 1. Then one may define the Glauber—Sudarshdistribution
of a stateys as follows:

(.¢]
P(z):=_lim (1—2) ) 2 (WID@Ik) kIDE)* )
A—>—00
k=0
whenever the limit exists, for example, as a Diadistribution.

A natural way to quantize a classical pha&se- argz is to integrated with respect to a
symmetric GOM defined oB8(C). UsingAl™ n e N, as an operator measure one gets the
phase space phase operator ®" .

Let s<1 and define a sesquilinear formt x M > (¢, V) — <I>‘;’¢ = (2n) 1 fOZ” 0

dES, ,6) = w1 [pargzdA;, ,(2) € C. Now

S |
. _ o= whenn # m
Ir), ) T whenn = m.

If ®* is bounded on\1 x M, then®* has a unique bounded extensiorHavhich defines a
self-adjoint operator ofit (see remark 3.1). In this case we denote this self-adjoint operator
also by®* and say that® is ans-ordered phase operator or ans-quantized phase angle.

For s=—1, ®="1 is the antinormally ordered phase operator, and it equals the
phase operato®!?. The corresponding phase observablezi®. If s <0, then ®* =
Q=222 Ak@l" . Whens < —1 thend® is a phase operator determined by the phase
observabler®, and if —1 < s < 0 then®* is a bounded self-adjoint operator. In the latter
case E° seems to be a non-positive quasi phase observable.

Fors = 0 one gets the self-adjoint boundga@hmetrically ordered phase operator or the
Wigner—Weyl quantized phase angle ®*=C [6-9]. This operator is determined by the quasi
phase observable’=C, which is not positive sincegfzo = /2 > 1. Also Dubin and Hennings

[22] have observed that*=C cannot be a first moment operator of a covariant POM. It is easy
to show that

min{n,m} t
_ 1IN\ T(n+m)/2—1t+1)
s=0 _ »(ntm)/2
=2 Valmt 3 (=2
Cnom e par; ( 2) th(n — t)l(m — 1)!

for all n, m € N (these matrix elements have also been calculated in [4, 7, 19, 20, 23]).
IfO0 <s < 1, ori < —1, then using equation (28) one gets

, n! YT (11=M\" g4
N — _ n ~ - —
@, 0] = 11— Al = 5 ( 5 ) n 00

whenn — oo. Thus,®* cannot define a bounded operator.

6. Covariant GOMs in coherent states

LetE: B(la — m,a + 7)) - L(H),« € R, be a covariant GOM and( ,,) be the structure
matrix of E. Assume thafz) € D for all z € C. Following the proof of theorem 7.1 of [11]
one can prove the next theorem.

Theorem 6.1. If lim, oo chntk = 1 for all k € Z, then the complex measure X +>
liM |z 00 E|z),12)(X) is concentrated at the point argz + 2ml, where | € Z is such that
argz + 2l € [0 — m, a + ).
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If im0 cn.n+k = 1 for allk € Z, then

a+m
lim / 0" dE\;, - (0) = (argz + 2w )™

|z]—00 -

for all m € N and we say thak behaves well in the classical limit (of coherent states).

The canonical phase observalfig,, and the phase space observabi#®,n € N,
behave well in the classical limit [11]. It can be shown (see appendix G of [4]) that
im0 Conik =L kEN, if 1] <landx #1,0rRes <O0.

Since|z) € D for all z € C and whens < 1 we see that the quasi-probability density
function

gy (@) = (1 — ny e~ Pl
= (1— 2 exp(—(L— 2|7+ |z|* — 2|z7/| codargz’ — argz))) 3

forall 7’ e Cis positive, that is, a probability density. Again, denoting= |z’| andd := argz’,
the phase probability distribution (see also [19, 23])

1 [ . 1
h\l) (9) = Z '/(; gfz> (xe|9) dxz = Ze—(l—k)mz +4/1— )\-|Z| Coi@ —_ argz)

x exp(—(1 — A)|z|?sirf 6 — argz))%erfc(—«/l —Alz| cog® — argz)) (34)
which tends to a 2-periodic Diracs-distributioné,, (0 — argz) when|z| — oo, or when
s > 1— (A — —o0). Thus, ifs < 1 all quasi phase observabEsehave well in the classical
limit of coherent states. Especially, the quasi phase obserabi® of the Wigner—Wey!
quantized phase angle’=" behaves well in the classical limit. Note that in the limit> 1—
we can formally write the angle margin of the Glauber—Sudarghdistribution in the form
hi51(0) = 82,6 — argz) forall z € C andz # 0.

It has been noted earlier [11, 24, 25] that th@imum variance, or the Levy measure, is
a good measure for phase uncertainty. $etR — [0, co] be a periodic probability density
foralln € N. If lim,_ 00 2,(0) = 82-(0 — @) then the minimum variance @f, can be
approximated by the integral

/ 62g, (6 + ) do (35)
—7T
whenn > 0 [11].

From equation (34) one sees that we may always assume thata@gthat is,|z) = |r)
wherer := |z|. Whenr > 0 we can approximate the probability distributibp> () by the
function

~ 1 242
K — / (A—1)r<o
and we see that the minimum variancehpg @) is
1 1-
VAR (E, |2)) > (37)

T 21— N2 T Az
Using the results of [11, 26] one sees that for the canonical (or Pegg—Barnett) phase
distribution

hcan

. 1 _ 2 - rn+m i(n—m)0 \/? _ 21292
Ir) (9) = Ee Z \/ﬁe ;re (38)

n,m=0 )
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the minimum variance is

VAR (E®" |z)) ~ Hllz’ (39)
Especially, for the Wigner phase distribution£ —1 ors = 0)

h500) ~ h$30) (40)
and

VAR (E*=0, |2)) ~ VAR(E®™", |2)) (41)

when|z| > 0. In references [19, 23] differences between the phase probability densities
hff;”(e) andhff)o(e) have beenillustrated using pictures. For the phase space phase observables
E® one gets [11]

VAR(E™, |z)) ~

- 42
L (42)
forall k € N.
Since the probability density of — (r|E'%)(X)|r) is of the form [11]
1 > 1 2qi
k) . —v, k —r2sirt o
h‘r)(O) = ﬁ 2 e v dv+ ﬁe 2r cosf
Kk o0 2
<y ( )(rzsinz )k / e u? du (43)
neo —r cosd
one gets for alk <1 that
o0
s k
iy ©0) = L —1) Y 2h @) (44)
k=0
Also by direct calculation
o0
VAR(E®, |2)) ~ (1— ) Zxk VAR(E'™ | |2)) (45)

k=0
when|z| > 0. Thus, when. > 0,A ~ 0

; ~ 1,10 1)
1(6) ~ h(Z)©) + MhZ) ) + -

and
VAR(E?, |z)) > VAR(E'?, 7))

when|z| > 0. Thus, in this case the POl seems to be a phase observable describing an
unsharp coherent state phase measurement (compared to the méa8yred

To conclude we note the following ordering between the minimum variances of different
GOMs in large amplitude coherent states:

VAR(E?, |z)) — O s —1—
VAR (E*, |z)) < VAR(E*=?, |2)) ~ VAR(E®" |2)) O<s<1
VAR(E*=0, |z)) < VAR(E", |z)) < VAR(E'?, |z)) —1<s<0

VAR(E'Q |2)) = VAR(E*="1, |2)) < VAR(E?, |2)) s < —1
VAR(E®, |z)) — 7%/3 5 — —00.



Phase observables, phase operators and operator orderings 7915

7. Summary

A phase shift covariant GOM

o0
1 .
E(X)= Y Camp / =m0 dg|n) (m| X € B([0, 27)) (46)
2 Jx
n,m=0

is determined by a complex matrix, ,,) with ¢, , = 1. It describes a measurement of the
phase arg of a coherent statg) if the measureE|,) |,) is a probability measure, since the
natural covariance conditioBg-i«.) |e-ie;) (X) = E|;), 1) (X @ a) is now fulfilled. Also for a
number statén) the phase distribution

1
B () = 5= [ & (@1)

is totally random.

If the structure matrixc, ) iS positive semidefinite thef is a POM, and one may
associate a probability measuwe— (¥ |E (X)) withitfor all vector stateg € H, ||y | = 1.
Examples of covariant POMs are the canonical phase obseriaghland the phase space
phase observablgg®’, k € N.

For any covariant GOM one may define the first moment form as

S=rl+ Y Cum—lnml (48)

Itis not necessarily a bounded operatorblfs a self-adjoint operator it has a unique spectral
measurer. It should be noted thab determines also the GOM uniquely. Thus, ifE is a
covariant POM it is natural to ask which of the two POMsor F, is the associated phase
observable of the self-adjoint operatbr There are some reasons which supgotd be a
phase observable:

e Eis phase shift covariang; is not;

e E gives a random distribution in number statégloes not;

o the support oft is always the whole phase interval ] whereas the support & may
be a proper subset of [@r].

If E is not positive, there are vector statggor which Ey, , cannot be defined or it is not a
probability measure where#s, ., is always a probability measure. BHts not covariant in
this case also.

The number operata¥ and ® satisfy the correspondence principle. Namely, a formal
relation

o
NO—ON =il =i Y cpmln)(m| (49)
n,m=0
corresponds to the classical Poisson bracket
{H,¢}pg =1—2182:(9). (50)

The Cahill-Glaubes-parametrized covariant GOM® is determined by the structure
matrix (c; ,,) foralls € Cand Res < 1. An E* is symmetric if and only if € R (ands < 1).
If 0 < s < 1thenE®is not positive. Ifs < 0 thenE® is a normalized operator measure and it
can be represented as the sum

ES(X)=(1-21) Z)J‘EW (X) (51)
k=0
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whereir = (s +1)/(s — 1). Such arE’ is a phase observable (POMYif —1.

The first moment formd* is not a bounded operator ifOs < 1. Itis a bounded self-
adjoint operator when< 0. If s = —1 we say thatb*="1 = ®!? js the antinormally ordered
phase operator, andsf= 0 we say thatb*=0 is the symmetrically ordered phase operator or
the Wigner—Weyl quantized phase angle. The structure m@fm&)) f E5=C is not positive

semidefinite sincegfzo = V2 > 1. Thus,®*= is not determined by a phase observable, that
is, by a phase shift covariant POM.
The Gahill-Glauber GOM:* gives a (phase shift covariant) probability distribution

X = Ej) 15(X) (52)

in a coherent state) for all s < 1. ThusE* may represent a coherent state phase measurement
although it is not a POM for alt < 1. Also E* gives a random phase distribution in number
states. Whete| — oo, EJ, |, tends to a probability measure concentrated at the point arg
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